
Escrow-Less Bitcoin-Collateralized Lending

The Lendasat Team

Lendasat

11 August 2024

Abstract. Bitcoin is trustless, self-custodial money. Every attempt at
using Bitcoin should respect these core tenets. And yet, every day, we
watch more and more Bitcoin flow in the direction of a select few cus-
todians. Bitcoin-collateralized lending is no exception to this unsettling
pattern. With this work, we reject the status quo and show how to borrow
using Bitcoin as collateral, the Bitcoin way.

Keywords: Bitcoin · Lending · DLCs · HTLCs

1 Introduction

Bitcoin—a scarce, decentralized currency—is the most liquid and secure asset
in the world. However, unlocking the liquidity of Bitcoin without selling it has
always been a challenge. For those who believe in Bitcoin’s long-term value,
selling is not an attractive option. It triggers capital gains taxes events, incurs
delays, and—–most importantly—risks losing a position in a highly profitable
market, where re-entering at a favorable price may be impossible.

To circumvent these inefficiencies, Bitcoiners are compelled to borrow against
Bitcoin. By using Bitcoin as collateral to borrow stablecoins or fiat currency,
holders can access liquidity while retaining ownership of their coins. Their finan-
cial needs can be met without sacrificing their long-term investment.

Regrettably, traditional lending platforms require borrowers to transfer their
Bitcoin to a third party, effectively giving up control of their assets. These cus-
todial services pose significant risks:

– Counterparty Risk: The borrower is exposed to the risk of the custodian
mismanaging, losing, or even confiscating their Bitcoin. The collapse of sev-
eral exchanges and lending platforms in recent years highlights the dangers
of entrusting your bitcoin to centralized entities.

– Opaqueness: Custodial platforms operate in a black box, often providing
little to no visibility into how your assets are being managed or what security
measures are in place.

– Regulatory Uncertainty: Centralized custodial services are subject to
regulatory pressures, which can lead to frozen assets, forced liquidations,
or other government-imposed restrictions that could leave borrowers in a
precarious position.



2 Lendasat

We propose an alternative way: a self-custodial loan protocol to allow users to
borrow against their Bitcoin without giving up control. This approach eliminates
counterparty risk by ensuring that the borrower retains control of their assets
throughout. We identify several key advantages:

– Secure: The borrower’s Bitcoin never leaves their control, reducing the risk
of loss or theft.

– Transparent: All transactions and collateral management are executed on
the blockchain, providing complete transparency and trustless verification.

– Peer-to-peer: Aligned with the core principles of Bitcoin—–empowering
users to maintain control over their financial sovereignty.

In the following sections, we present a protocol that harnesses the capabilities
of Discreet Log Contracts (DLCs) to fundamentally improve the state of Bitcoin-
collateralized lending.

2 Hash Time Lock Contracts (HTLCs)

The basic building block for conditional payments on Bitcoin is the HTLC.
With a HTLC, Alice can lock up coins in a Bitcoin contract with two predefined
spending paths:

1. Her counterparty, Bob, can spend if he learns a secret only known to Alice:
the preimage to a secret hash.

2. Alice can spend after a timelock expires.

Bob is able to purchase the secret from Alice to get the coins. The Bitcoin
HTLC does not define how Alice may reveal the secret, although it is common
for Bob to lock up value in a second HTLC using the same hashlock. Alice has
to reveal the secret to claim whatever Bob locked up, allowing Bob to unlock
the original HTLC.

A Miniscript policy for a basic HTLC may look like this:

or(
and(pk(bob), sha256(secret))
and(pk(alice), older(10)),

)

Alice is sending coins to Bob on the condition that Bob learns the secret. If
Bob does not learn the secret before the timelock expires, Alice is able to recover
her funds.

To date, HTLCs have been used extensively in Lightning payment channels,
cross-chain atomic swaps and other contract protocols. In this work we show
how HTLCs can be composed with other contracts to define nested spending
conditions.



Escrow-Less Bitcoin-Collateralized Lending 3

3 Discreet Log Contracts (DLCs)

DLCs are peer-to-peer Bitcoin contracts that can be unilaterally settled with the
help of an oblivious oracle. Traditionally, both Alice and Bob provide coins as a
wager, although single-funded DLCs are valid. The coins are divvied up based
on the oracle’s attestation to the outcome of a predefined event.

The original DLC protocol proposed by Dryja[2] leverages the linearity of
Schnorr signatures[6] to sum participant public keys with oracle signature points.
The computed public keys are used to lock coins that can only be unlocked if
the oracle publishes one of several anticipated signatures.

The modern approach specified in dlcspecs[1] moves the oracle signature
points out of the contract’s public key. Coins are locked in a 2-of-2 multisig out-
put shared by Alice and Bob. Multiple spend transactions, known as Contract
Execution Transactions (CETs), are constructed and pre-signed. Instead of ex-
changing valid CET signatures, the participants share adaptor signatures[5][3],
verifiably encrypted on different oracle signature points. The set of CETs and
their corresponding adaptor signatures define the financial contract.

3.1 Hash Contract Execution Transactions (HCETs)

In the DLC protocol, a compliant oracle unlocks a single CET by attesting to
a single outcome per event. The unlocked CET pays directly to either Alice,
Bob or both, depending on the terms of the contract. The payout addresses are
chosen by Alice and Bob, and they are usually P2WPKH addresses owned by
either party.

The dlcspecs protocol does allow the participants to choose arbitrary payout
addresses. We can use this to impose additional conditions on the CET payouts.
For instance, one of the two participants may be required to provide a secret to
claim the coins distributed to them by the oracle.

A HCET is a CET where one of the two payout scripts is a HTLC. In a
DLC protocol involving HCETs, one party would act as a secret-holder and the
other as the secret-learner. As such, all HCET payout outputs belonging to the
secret-learner would be encumbered by a HTLC with two spending conditions:

or(
and(pk(secret_learner), sha256(secret))
and(pk(secret_holder), older(10)),

)

If the secret-learner discovers the secret in time, they are able to claim their
share of any HCET. Otherwise, the secret-holder can claim the secret-holder’s
output (as well as their own regular output in the HCET).

HCETs can be used in protocols where one party provides all the collateral
in the DLC, where the counterparty’s claim on the collateral is contingent on
other value being exchanged between the two participants. A loan protocol fits
that description.



4 Lendasat

4 Protocol

The protocol we describe here involves two active participants: a borrower and a
lender. The borrower holds bitcoin on the Bitcoin blockchain. The lender holds
stablecoins on another blockchain, also known as the loan blockchain. The loan
blockchain may also be the Bitcoin blockchain itself, provided there is a supply
of stablecoin tokens on Bitcoin (e.g. stable coins issued on Taproot Assets or
RGB).

The loan blockchain must have certain properties:

– Support for smart contracts. In particular, support for the SHA256 hash
function and timelocks.

– Support for tokens, such as stablecoins.

Suitable candidates for the loan blockchain include Ethereum, TRON or
Solana. L2s, such as Starknet or Polygon, may also qualify, despite not being
traditional blockchains.

The borrower wants to borrow stablecoins, which they may use for payments
or to access DeFi products outside of the Bitcoin ecosystem. The lender wants
to earn interest on their stablecoin loan.

When describing this protocol, we assume that borrower and lender have
already agreed to the terms of the financial contract, including principal amount,
interest, loan term and loan-to-value (LTV) ratio.

4.1 Locking up the Bitcoin collateral

The protocol starts with the borrower locking up their collateral in a smart
contract on Bitcoin. This collateral contract must have the following properties:

1. The borrower will be able to unilaterally claim back the collateral, if the
lender never provides the loan principal.

2. The lender will be able to unilaterally liquidate the collateral, if the value of
the collateral falls below an agreed upon level.

3. The lender will be able to unilaterally claim principal plus interest (in bit-
coin) at maturity, if the borrower does not pay back the loan on the loan
blockchain.

4. The borrower will be able to unilaterally claim their collateral (minus prin-
cipal and interest), if they do not pay back the loan on the loan blockchain.

Before the collateral contract is published on Bitcoin, borrower and lender
must collaborate to build the funding transaction and any possible spending
transactions. This process is similar to the setup of a 2-party DLC, with certain
tweaks.

Collateral secret generation The borrower generates a random 32-byte col-
lateral secret and a borrower keypair. The borrower sends collateral secret hash
and borrower public key to the lender.



Escrow-Less Bitcoin-Collateralized Lending 5

Loan secret generation The lender generates a random 32-byte loan secret,
a lender keypair and a lender Bitcoin address. The borrower sends loan secret
hash, lender public key and lender Bitcoin address to the borrower.

Building the Bitcoin transactions The borrower constructs an unsigned
Partially Signed Bitcoin Transaction (PSBT) of the collateral funding transac-
tion.

The collateral funding transaction PSBT specifies: a list of borrower inputs
to fund the collateral; a collateral output ; a borrower change output. The collat-
eral output specifies the collateral amount as well as the collateral script, built
with the data shared by the lender in the previous step. The collateral script is
described in detail in section 5.

The borrower also constructs three types of pre-signed transactions, spend-
ing from the collateral output : the non-collaborative repayment transactions, a
set of HCETs used to enforce the loan contract at maturity; the liquidation
transactions, a set of evenly distributed HCETs, allowing the lender to enforce
liquidation throughout the lifetime of the loan; and the refund transaction, let-
ting the borrower recover the collateral after the collateral refund timeout, a
while after loan term. These pre-signed transactions are necessary to secure the
protocol in case any party stops cooperating.

All HCETs in this protocol use the collateral secret hash to ensure that the
lender can only access the collateral they may be owed if they know the collateral
secret.

The borrower signs the refund transaction and provides an adaptor signature
for every generated HCET. As specified in the DLC protocol, the lender will be
able to transform any given adaptor signature into a valid signature if the oracle
(or oracles) attests to a specific price at a specific time.

The borrower sends the unsigned collateral funding transaction PSBT, the
non-collaborative repayment transactions, the liquidation transactions, the re-
fund transaction, with corresponding signatures or adaptor signatures where
necessary.

Complete signature exchange The lender verifies the validity of the transac-
tions, signatures and adaptor signatures sent by the borrower. If the verification
is successful, the lender proceeds with generating their own signature for the
refund transaction, as well as an adaptor signature for every HCET received in
the previous step. The lender sends these signatures and adaptor signatures to
the borrower.

Publish collateral funding transaction The borrower verifies the validity
of the signatures and adaptor signatures sent by the lender. If the verification is
successful, the collateral contract is complete and the borrower is able to safely
sign the collateral funding transaction and publish it to the Bitcoin blockchain.



6 Lendasat

Fund

contract

Refund

pkB

CETsLiq.

pkB

pkL + SB

CETsRep.

pkB

pkL + SB

Repayment

pkB

+t1

pkB

pkB , pkL, O∗

+t2

pkB , pkL, O∗

pkB + SL

Fig. 1. Bitcoin collateral transaction schema.

4.2 Claiming the principal on the loan blockchain

The lender is now able to verify that the collateral is locked up in the Bitcoin
blockchain. Once the collateral funding transaction reaches their desired number
of confirmations, the lender proceeds with the protocol on the loan blockchain.

Using the smart contract capabilities of the loan blockchain, the lender locks
up the principal in the loan contract, a smart contract with two spend conditions:

1. The borrower can spend if they authenticate based on the borrower public
key and if they reveal the preimage to the collateral secret hash i.e. the
collateral secret.

2. The lender can spend after a loan refund timeout. The timeout must be
shorter than the collateral refund timeout, to prevent the borrower from
both refunding their Bitcoin collateral and claiming the principal.

Once the borrower sees the locked-up principal on the loan blockchain, they
claim it using the first spending path. The lender sees this and learns the collat-
eral secret. The loan is now established.

Assuming normal oracle behavior, with knowledge of the collateral secret the
lender will be able to unilaterally claim some or all of the collateral if the loan



Escrow-Less Bitcoin-Collateralized Lending 7

value dips below the maintenance margin, or if the borrower fails to pay it back
before maturity.

4.3 Cooperative repayment

If the borrower is ready to repay the loan, they can do so on the loan blockchain.
To initiate repayment, the borrower locks up the repayment amount in the re-
payment contract. Borrower and lender must agree on the repayment amount
for the repayment protocol to succeed. The repayment contract has two spend
conditions:

1. The lender can spend if they authenticate based on the lender public key
and if they reveal the preimage to the loan secret hash i.e. the loan secret.

2. The borrower can spend after a loan repayment timeout. The timeout must
end before the loan reaches maturity, to prevent the lender from both uni-
laterally claiming principal plus interest from the Bitcoin collateral contract
and claiming the repayment from the repayment contract.

Once the lender sees the locked up repayment amount on the loan blockchain,
they claim it using the first spend path. The borrower sees this and learns the
loan secret. The borrower now spends the collateral contract, using their bor-
rower keypair to authenticate and the loan secret that was just revealed. The
borrower must do this before the loan reaches maturity, to prevent the lender
from triggering the unilateral repayment on the Bitcoin blockchain.

4.4 Alternative paths

After the borrower locks up the collateral on the Bitcoin blockchain, the loan
protocol can deviate from the happy path in a number of ways. In the previous
sections we have alluded to some of them, but here we describe them all explicitly.

The lender fails to lock up the principal There is no guarantee that the
lender will lock up the principal on the loan blockchain in response to the bor-
rower locking up the collateral. If the lender does not come through with the
principal, the borrower is able to recover their collateral after the collateral re-
fund timeout.

Since loan terms usually span multiple months, the borrower’s collateral can
end up stuck in the contract for a very long time. In section 6.2 we discuss how
the protocol can be adapted to mitigate this problem.

The borrower never claims the principal Similarly, there is no guarantee
that the borrower will claim the principal after the lender locks it up on the
loan blockchain. In such a scenario, both participants will have to wait for their
respective timelocks to expire:

– The lender waits for the loan refund timeout.



8 Lendasat

– The borrower waits for the collateral refund timeout.

Given that, for safety, the loan refund timeout has to be smaller than the col-
lateral refund timeout, we are able to choose a much shorter loan refund timeout
relative to the loan term. For example:

– Loan term: 12 months.
– Collateral refund timeout : 13 months.
– Loan refund timeout : 1 day.

The borrower fails to pay back the loan cooperatively Even though it
is quicker and cheaper for the borrower to repay the loan cooperatively, it can
happen that repayment has not been made by loan maturity.

To guarantee repayment of the loan value (including interest), the lender
relies on the DLC path of the collateral contract. At loan maturity, the oracle
attests to the price of Bitcoin in the stablecoin currency (often USD), unlocking
a single HCET. The unlocked HCET contains one output for the lender, holding
a Bitcoin amount equivalent (at the time of attestation) to the total repayment
value in the stablecoin currency.

The lender publishes the signed HCET to the Bitcoin blockchain. Once con-
firmed, the lender spends their output using the lender keypair and the collateral
secret.

The unlocked HCET pays any leftover collateral directly to the borrower. In
fact, the borrower is able to execute the non-collaborative repayment themselves,
as they possess their own version of the same HCET, also unlocked by the same
oracle attestation that unlocked the lender’s HCET.

The lender fails to claim the repayment If the borrower initiates the co-
operative repayment protocol by locking up the repayment amount in the loan
blockchain, they still depend on the lender to claim it, thus revealing the loan
secret.

If the lender fails to do so, the borrower is able to refund the repayment
amount after the loan repayment timeout.

As mentioned earlier, for safety, the loan repayment timeout must unlock the
repayment amount for the borrower before loan maturity.

Once the loan repayment has been refunded back to the borrower, both
participants can rely on the non-collaborative repayment path to settle the loan
fairly, as described in the previous section.

Liquidation According to the financial terms of the loan, the loan may be
liquidated before maturity. This can happen if the LTV ratio approaches 100%,
although it will depend on the specific financial contract set up by borrower and
lender.

If the value of the loan dips below the agreed upon threshold, the lender is
able to unilaterally liquidate the collateral. Unilateral liquidation uses the same



Escrow-Less Bitcoin-Collateralized Lending 9

mechanism as non-collaborative repayment i.e. HCETs unlocked by the oracle.
The lender publishes an unlocked HCET which gives most or all of the collateral
to the lender, if they can authenticate using the lender keypair and provide the
collateral secret.

The primary difference with non-collaborative repayment is that liquidation
HCETs are unlocked before loan maturity.

Oracle malfunction The ability to unilaterally enforce the rules of the loan
depends on the oracle operating correctly. If the oracle attests to incorrect values,
either party may be hurt. If the oracle fails to attest when expected, the lender
may be hurt.

In particular, if the oracle fails to generate an attestation corresponding to
loan maturity time, before the collateral refund timeout, the borrower will be able
to recover their collateral without repaying the loan. In section 6.1 we discuss
how to prevent this kind of scenario.

5 The collateral contract script

The collateral contract script is used to lock up the collateral on the Bitcoin
blockchain. We use a Miniscript policy to specify the contract:

or(
99@and(pk(borrower_0), sha256(loan_secret)),
1@or(

99@thresh(2, pk(borrower_1), pk(lender)),
1@and(pk(borrower_2), after(1754611832))

)
)

If we pass this policy to the rust-miniscript:12.2.0 compiler we get the
following SegWit Miniscript descriptor:

andor(
pk(borrower_0),sha256(loan_secret),
or_i(

and_v(v:pkh(borrower_2),after(1754611832)),
and_v(v:pkh(borrower_1),pkh(lender))

)
)

We can also use the compiler to generate the following Tapscript Miniscript
with an unspendable internal key:



10 Lendasat

tr(
UNSPENDABLE_KEY,
{

{
and_v(v:pk(borrower_2),after(1754611832)),
and_v(v:pk(borrower_1),pk(lender))

},
and_v(v:pk(borrower_0),sha256(loan_secret))

}
)#az4ls4sf

5.1 The Miniscript policy explained

The most likely path is the one that corresponds to the cooperative repayment
of the loan:

and(pk(borrower_0), sha256(loan_secret))

This borrower can spend the collateral contract using this sub-policy by using
their borrower keypair and the loan secret.

The second most likely outcome is that the collateral contract is spent with
signatures from both the borrower and the lender:

thresh(2, pk(borrower_1), pk(lender))

This corresponds to the DLC path. Prior to the publication of the collateral
funding transaction, borrower and lender collaborate to construct HCETs spend-
ing from this sub-policy. Instead of sharing valid signatures, they share adaptor
signatures which will only become valid depending on the future attestation of
an agreed upon oracle (or oracles).

Finally, the refund path is the least likely sub-policy:

and(pk(borrower_2), after(1754611832))

The borrower will have to wait until the timelock expires to spend using
their borrower keypair. This path ensures that the collateral can be recovered
in full if all else fails i.e. if borrower and lender fail to agree on a cooperative
repayment of the loan and if the oracle fails to generate an attestation that
enables non-collaborative repayment through the DLC.

6 Limitations and future work

6.1 Trusting the oracle

In the context of Bitcoin-collateralized loans, replacing the escrow with an oracle
is advantageous for several reasons:



Escrow-Less Bitcoin-Collateralized Lending 11

– The oracle is oblivious to the contract. They do not learn about the terms
of the loan or even the existence of the loan.

– The oracle does not touch any coins. There is no multisig involving the oracle,
so it’s much harder for the oracle and one of the participant to collude and
run away with the collateral.

The oracle is in a weaker position than the escrow, but borrower and lender
still need to trust that the oracle will behave correctly.

A strategy to deal with this problem is to decentralize the oracle. Instead of
relying on one oracle, who may be unreliable or untrustworthy, the DLC protocol
can be carried out using a quorum of oracles. The CET (HCET in our protocol)
adaptor signatures are locked in such a way that they require a threshold number
of attestations from a set of oracles. If the required minimum number of oracles
agree, a CET is unlocked.

The multi-oracle setup comes at the cost of complexity and speed. It is more
work to manage announcements and attestations from multiple oracles, and gen-
erating and decrypting multi-oracle adaptor signatures is considerably slower.
More efficient oracle attestation schemes can be used to mitigate these prob-
lems[4].

6.2 The borrower moves first

In our loan protocol, the borrower locks up the Bitcoin collateral first. After
doing so, the borrower is at the mercy of the lender, who can back out of the
deal at no additional cost. In that case, the longer the borrower has to wait
to recoup their collateral, the more damaging the situation is for them. Since
Bitcoin-collateralized loans can be open for months and even years, this problem
cannot be ignored.

There are multiple ways to approach this problem:

1. Trust the lender to help the borrower recover the collateral early.
2. Introduce an early collateral refund path.

The first option might be sufficient in most scenarios. Having decided that
they no longer want to go ahead with the loan, the lender has no incentive to
not help the borrower. At the same time, the only incentive for the lender to
help the borrower is to prevent reputational damage. Depending on the lender’s
profile, this may not carry any weight. Furthermore, in some cases the lender
may simply disappear, with no ulterior motive to harm the borrower.

Thus, we should consider adding an early collateral refund path to the pro-
tocol. The properties of this alternative spending path are:

– The borrower can spend after a much shorter timeout relative to the collat-
eral refund timeout.

– The lender can punish the borrower’s spend attempt if the principal has
already been claimed on the loan blockchain i.e. with knowledge of the col-
lateral secret.



12 Lendasat

We cannot modify the collateral contract script to achieve this, because the
lender needs to be able to punish the borrower on the publication of the early
collateral refund transaction. As such, before the borrower publishes the collateral
funding transaction, borrower and lender need to collaborate to build the early
collateral refund transaction. This transaction spends the collateral output to a
new shared output with the following spending conditions:

– The borrower can spend after an early collateral refund timeout.
– The lender can spend if they provide the collateral secret.

The timeout can be considerably shorter than the collateral refund timeout,
but it needs to be long enough to allow the lender to punish the borrower if
they are trying to run away with the collateral after claiming the principal. This
imposes a sometimes-online requirement on the lender, who needs to periodically
monitor the blockchain for the early collateral refund transaction, to be safe.

6.3 Partial repayment

The repayment scheme specified here expects the borrower to pay back in full.
The repayment amount is defined when the loan is created: the sum of principal
and total interest. The stablecoin value to be repaid is actually written into the
rules of the DLC. If the borrower fails to make voluntary repayment, the oracle
attestation ensures that the bitcoin returned to the lender has the expected
stablecoin value (at the time of attestation).

It is often desirable for the borrower to repay part of the loan before maturity.
To allow for this, we could add another spending path to the collateral contract
script :

or(
50@and(pk(borrower_0), sha256(loan_secret)),
50@or(

99@thresh(3,
pk(borrower_1),
pk(lender_0),
sha256(partial_repayment_secret)

),
1@or(

99@thresh(2, pk(borrower_2), pk(lender_1)),
1@and(pk(borrower_3), after(1754611832))

)
)

)

In the updated script, the partial repayment sub-policy is:



Escrow-Less Bitcoin-Collateralized Lending 13

thresh(3,
pk(borrower_1),
pk(lender_0),
sha256(partial_repayment_secret)

)

With this new spending path, borrower and lender can pre-sign a completely
new collateral funding transaction spending from the collateral output, as well
as all the other protocol transactions spending from the new collateral output.
The new collateral output is reduced based on the repayment amount, with the
leftover funds being sent to the borrower in a second output.

The lender is safe to pre-sign these transactions because the borrower is only
able to publish them with knowledge of the partial-repayment secret. It is also
mandatory that the lender uses a different signing key for this spend path.
For the borrower to learn the partial-repayment secret, they will have to lock
up the partial repayment amount on the loan blockchain using a hashlock with
the partial-repayment secret as the preimage. Once the lender claims the partial
repayment, the borrower is able to publish the new collateral funding transaction,
recovering part of their collateral.

7 Conclusion

Here we have laid out a path for Bitcoiners to borrow against their Bitcoin, free
from the yoke of custodians. If history1 is anything to go by, the choice is clear.

References

1. dlcspecs: Specification for discreet log contracts. https://github.com/discreetl
ogcontracts/dlcspecs (2019), accessed: 2024-08-10

2. Dryja, T.: Discreet log contracts. https://adiabat.github.io/dlc.pdf (2017)
3. Fournier, L.: One-time verifiably encrypted signatures a.k.a adaptor signatures. ht

tps://github.com/LLFourn/one-time-VES/blob/master/main.pdf (2019)
4. Madathil, V., Thyagarajan, S.A., Vasilopoulos, D., Fournier, L., Malavolta, G.,

Moreno-Sánchez, P.: Cryptographic oracle-based conditional payments. https:
//eprint.iacr.org/2022/499.pdf

5. Poelstra, A.: Scriptless scripts. https://download.wpsoftware.net/bitcoin/wi
zardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf (2017), accessed:
2024-08-10

6. Schnorr, C.: Efficient identification and signatures for smart cards. Pages 239–252
(1990)

1 https://bitcoinmagazine.com/business/sam-bankman-fried-and-ftx-largest
-crypto-fraud-history


